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Product of Proposition-State Structures Preserving 
Superposition 

Antonio  Zecca  1 

Received October 20, 1992 

The notion of product is introduced in the framework of proposition-state 
structures. Central roles are played by the invariance of the superposition 
relation and the maximality property of the states under the interaction of 
physical systems. 

1. INTRODUCTION 

The problem of the description of a compound physical system ,E + E 
in terms of the interacting physical systems ~ and ~ has been formulated 
in the context of the logical approach to quantum mechanics by many 
authors (Hellwig and Krausser, 1977; Zecca, 1978, 1981a; Aerts, 1982, 
1984; Pulmannovfi, 1983, 1985). 

If (L, S) and (/~, S) are the logics and states of E and ~,, respectively, 
the solution of the problem is that of obtaining the logics and states (L, S) 
of E + ,E in the form L = L | and S = S | S, with | being a suitable 
notion of the product of logics and states. The solutions proposed by the 
mentioned authors contain, besides the limiting case of the product of 
classical logics and purely quantum logics, also the cases of the product of 
a classical and an irreducible quantum logic. This last case is relevant in 
connection with the problem of quantum measurement, where a classical 
logic is generally associated with the measuring apparatus and an irre- 
ducible quantum logic with the physical system (Jauch, 1968; Ludwig, 
1973; Sudarshan, 1976). The product of both logics and states provides also 
a basis for the formulation of reduced dynamics in the context of quantum 
logics. This could be done by extending in some way to compound systems 
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and subsystems the reversible and irreversible dynamics of conventional 
quantum mechanics [some results in this direction can be found in Gorini 
and Zecca (1975) and in Zecca (1976, 1992)]. 

The mentioned schemes of Hellwig and Krausser, Zecca, and Aerts 
contain implicitly the notion of the product of states only in the limiting 
cases, since they can be reduced, via standard representation theorems, to 
the Hilbert or to the phase space model. 

Instead, a product at the abstract level of both logics and states has 
been explicitly given in the schemes of Pulmannovfi (1983, 1985). 

It is the object of this paper to propose another intrinsic definition of 
product in the framework of the proposition-state structures. This is 
obtained by coupling states and propositions in an interdependent way 
under the condition that the physical systems Z, ~ preserve their identities 
when considered as subsystems of the compound physical system Z + Z. 

The central request on the theory is the assumption of the invariance 
under physical interaction of the superposition relation and of the maxi- 
mality property of the states. 

The product of logics which is obtained in this way has many 
properties similar to those of the coupling of logics previously defined by 
the author (Zecca, 1978, 1981a). 

2. THE PROPOSITION-STATE STRUCTURE 

Definition I. A proposition-state structure (pss) is a pair (L, S), 
where L is a logic, namely a complete, orthomodular, atomistic lattice with 
greatest and least elements V L  = 1 and A L  = JZ, respectively, and S is a 
family of maps s : L ~ [ 0 , 1 ] ,  s ( 1 ) = l ,  such that, denoting Sl(X)= 
{s~S:s (x )= I} and So(x)={s~S:s (x )=O} (and with _1_ being the 
orthocomplementation in L): 

A1. Sl(x) c S l ( y ) ~ x  < y, x , y ~ L .  
A2. S,(1) = S, S,(x) = So(x• 
A3. S,(A~x~) = (']~S,(x,), V[x~} =S.  

Under these assumptions the center C(L) of L, namely the set of the 
elements of L which commute with all the elements of L, is a completely 
distributive sublattice of L. As usual, the elements of L (propositions) 
represent classes of equivalent tests on E, and S represents the set of the 
preparing procedures of E. The number s(x) (s ~S, x ~L) is interpreted as 
the probability of the outcome yes for a test of x when E is in the state s. 
If D is any set of states, we denote by L(D) the dual principal ideal 
L(D) = {xlxEL: s(x) = 1 Vs~D} (Berzi and Zecca, 1974). 
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Definition 2 (Varadarajan, 1968; Berzi and Zecca, 1974). The state s is 
a superposition of the states D c S if L(s) ~ L(D). 

For every D c S the map D-- . / )  = {s6S: L(s )~  L(D)} is a closure 
operation whose family of closed subsets of S is exactly {St(x): x eL} and 
S, (V~ x~) = U~ St (x~) for every {x~ } c L. Moreover, the following identi- 
ties hold (Gorini and Zecca, 1975): 

/) = (~ {St(x): D c St(x)} = S~(AL(D)) 

Lemma 1. For every family {D~ } of subsets of S: 

(i) L((-]~ D~) = N~ L(D~). 
(ii) ~/)~ = N~ D~. 

Proof (i) This holds from the very definition of L(D). (ii) One has 
~ D~ c ~ / ) ~  and hence 0~ D~ c ~ / ) ~ ,  with (']~/)~ being closed by the 
previous considerations and A3. I f  s e (']~ D~, then L(s) ~ L(D~) for every 
~, and, by (i), L(s) ~ O~L(D~) = L(0~D~)  and hence s c O l D  ~. 

Remark I. Let L be a Boolean lattice. With our assumptions L is 
orthoisomorphic ( - )  to the power set of its atoms: L "~ P(A(L)). Let S* 
denote the set of the probability measures on L with total mass = 1 and S 
a subset of S* which coincides with the atomic measures on L or which 
contains the atomic measures on L and satisfies assumption A3. From the 
l - 1  correspondence between the atomic measures and the atoms of L, one 
can check that, in both cases, (L, S) is a pss. 

Remark 2. Let L(H) be the standard logic associated with a separable 
complex Hilbert space H of dimension > 3, and let S be the set of the maps 
s: L ~ [O, 1] such that s(H) = 1, s ( V  i xi) = ~ i  s(xi) if xi 2. xk (i r k). There 
follows s ( ~ )  = 0. By the Gleason theorem (Gleason, 1957) there exists an 
affine isomorphism p--*sp of the density operators (positive trace 1 opera- 
tors) K(H) onto S such that so(x ) =Tr(pxp), for every peK(H), xeL ,  
where px is the orthogonal projection whose range is x. Then (L, S) is a pss 
(Gorini and Zecca, 1975). 

Definition 3. (Berzi and Zecca, 1974). Let (L, S) be a pss. Then: 

(i) s e S  is a maximal state if L(s) is a maximal dual principal ideal: 
AL(s) is then an atom of L. We denote by Sm the set of the maximal states 
of S. 

(ii) s s S  is a characteristic state if s' ~S and L(s) = L(s') =~ s = s'. The 
set of the characteristic states is denoted by S,.. 

At the level of a general pss one can show that S< ~ Sp c~ S~, with Sp 
being the set of the pure states (Berzi and Zecca, 1974). In the case of 
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distributive logics, of the normal states of  a W*-algebra, and hence in the 
case of Remark 2, one can show that S,. = Sp =- S,, (Zecca, 1981a). 

3. DEFINITION A N D  P R O P E R T I E S  OF INVARIANCE OF THE 
P R O D U C T  

The notion of a product of logics previously proposed by the author 
(Zecca, 1978, 1981a) is extended to include the states in order to define a 
product of proposition-state structures. 

Definition 4. A proposition-state structure (L, S) is a pseudoproduct 
of the pss's (L, S) and (/~,, ~) if there is a map �9 L •  (we write 
�9 if) = x o ~7) such that the following conditions hold: 

PI. 1 o i = 1L, X o ~ = ~ o 2 = ~SL for every x ~ L , ~ E .  
P2. x o ~ = y  o ~ , x  =y, ,~  = ~  ( x , y ~ L ,  2 , ~ L , x  r ~ , y  # (~5, ~ # 

P3. A(L) �9  = A(L), A(L) being the atoms of L. 
P4. e(x) o e(~) = e(x o ~) for every x 6L,  2 ~ff,, where e(x) denotes the 

central cover of x (Maeda and Maeda, 1970). 

If D ~ S,/3 c ~, denote 

D |  = {sgls~O, g~/3; s~: L x E --,[0, 1], (ss')(xo 2) = s(x)g(x)} 

Then we assume that S | ~ consists of the restriction to L x / 7  of 
elements of S (which we denote again by S | S) such that 

PS. & ( x  o 2) = Sl(X) |  for every x e L ,  2 ~ s  
P6. So(x o 1) = So(x) |  S0(1 o~) = S |  for every x ~ L ,  2~F.. 

Proposition I. Let the pss (L, S) be a pseudoproduct of (L, S) and 
( L  S)- Then: 

(i) (A, x )o (AB &) = Ao,  (x~o,~) for every {x= } c L, {2r c/7,}. 

(ii) x 02 # d L ;  then x 02 < y  o jT<=~x <y,  2 <~. 

Proof  (i) From A3, P5, Lemma 1, and properties of set-theoretic 
intersection, 

= N,.e s, (x,) | s ,  (&) 

= s, (A,,e (x o &)) 
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(iii) x o 2 < y o )7 is equivalent to S~ (x o ~) c~ Si (y o )7) = $1 (x o s By 
(i) and A3, S~(x Ay  os Ay) =S~(x o~). By P2, x Ay  =X and ~ A)7 = 2  
and hence x -< y, 2 < )7. 

Proposition 2. Let the pss (L, S) be a pseudoproduct of  (L, S) and 
(/7, ~). I f D  ~ S, D ~ S, s~S, geS, then the following conditions are equiv- 
alent: 

(i) AL(D | D) = AL(D) o AL(JD). 

(ii) b | 1 7 4  
(iii) L(s) = L(D) and L(s') = L(D) ~ L(ss') ~ L(D | ~). 

Proof. ( i )-~(i i )  from P5, 

D r fi  = S, ( A L ( D  | fi)) = S 1 (AL(D)) | S 1 ( fL(f i ) )  = b |  

(ii) =~ (iii). From seb ,  ~ f i ,  

Hence L(s~ = L(D | D). 
(iii) ~ (ii). We have 

LS| = O |  

from a property of  closure under superposition. On the other hand 

that is, 

implies, by the assumptions, 

Hence 

s ~ b |  

sg6D | 

b | L3 c D |  D |  being closed 

Definition 5. A proposit ion-state structure (L, S) is a product of the 
pss's (L, S) and (/7, S) if it is a pseudoproduct of them and any one of the 
equivalent conditions of Proposition 2 is satisfied. In the case of the 
product we write (L, S) = (L |  S @ S). 

Proposition 3. Let (L, S) = (L | S @ ~). Then: 

(i) V~,~ (x~o xp = V~ x~o V~ xe, {x~ } ~ L, {~e } c L 
(ii) (x  o Yc) z = (x  ~- o ~-~) v ( x "  o Yc) v (x  o Yc') ,  x r  .~T_,. 
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Proof. (i). One has from the very definition of the product of states 
and the property of the closure under superposition 

OB Sl (x) | S 1(2/~) D S 1 (x) | U/i, S 1 (2/~) 

By taking the closure, from P5 and Proposition 2(ii), we have 

Sl(Vfl (X ~ Xfl)) ~ Sl(X) @ Ufl Sl(Xfl ) = Sl(X) ~) Sl(Vfl xfl) ~-- Sl(X~ Vfl 2fl) 

Therefore V~ (xo 2B) _> x o V~ 2~. But V/~ (xo 2~) < x o V~ 2~) as a con- 
sequence of Proposition l(ii). Therefore x o Vp x~ = V~ (x o 2~). The dis- 
tributivity of V over the other component of the product can be shown in 
a similar way. 

(ii) One has by PS, P6, Proposition 1, and (i): 

(x o 2) • = (x o 1) • v (1 o 2)• 

= ( x  • o i )  v ( i  o ~z •  

= [ x  • o ( 2  v 2 •  v [ x  v x ~ o 2 • 

= x  z o 2  v x  •  z v x o . ~ •  

Besides the superposition also the maximality of the states is preserved 
under the product. 

Lemma 2. Let (L, S) = (L |  S |  s~S,,, 3~S,~. Then s~ES,,. 

Proof From the assumptions, AL(s)~A(L),AL(3)~A(E).  By P3, 
AL(s) o AL(s') cA(L) and since L(ssO ~ {x o 2: xeL(s), 2eL(s')}, it follows 
that AL(ss') <- AL(s) o L(3). Hence AL(ssO cA(L) and L(ssO is a maximal 
dual principal ideal. 

As a consequence, an alternative formulation of P3 could be that of 
requiring that the products of maximal states give maximal states. 

Another consequence is that the product of characteristic states is in 
general a maximal state. In order that s~ be characteristic in S when both 
s and ~ are characteristic in S, 5, it is necessary and sufficient that 

{s) | {3} = {s} | {~} 

Indeed sg is characteristic iff {sY} -= SI(AL(ss')), hence iff 

But {sS} = {s} | {3}. This is the case, for instance, of the normal states of 
a W*-algebra (Zecca, 1981b). 
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4. GENERAL RESULTS AND SPECIAL EXAMPLES 

Suppose now (L, S) = (L | L, S | S). Then: 
(a) The maps # : L - * L  and f i : s  defined by # ( x ) = x o i ,  

fi(s = 1 o ~ are unitary c-morphisms in the sense of Aerts (1984), as a 
consequence of the previous results, such that: 

(b) #(x) commutes with fi(s for every x e L , : ~ / 7 ,  since 
( l o s  V(Ios177 as one can check by using the 
results of the previous section. 

(c) Moreover, #(e) A fi(~ = e o 6 is an atom of L whenever esA(L) ,  
6~A(/_~). Hence (#, fi, L) is a solution of the coupling conditions for logics 
in the sense of Aerts (1984). 

(d) If e o 6 < f o f  v go  g, with f #  g , f  # g, e,f,  g~A(L) ,  ~,f,, g~A(s  
then e o ~ = f o f o r  e o ~ = g  o ~. Indeed by using the fact that a triple of 
elements of an orthomodular lattice is distributive if some one of them 
commutes with the other two (Maeda and Maeda, 1979), from Proposition 
3 we have 

e o ~ = e  o~ A l o~ <-<-[f o l v l og'] A l o ~ = f o ~ v l o ( ~ A g ' ) - - < f o ~  

SO that e - f .  Analogously, ~ = f .  Hence the product atoms g o ~ , f  o f  with 
g =~f and f # ~  are separated by a superselection rule (Piron, 1976). An 
analogous property holds in the schemes of Aerts (1985) and Pulmannovfi 
(1985). 

(e) If  A(L)OA(/7,) = A(L), an immediate consequence of point (d) is 
that 

[eo 6 v f o f]  A ( f o r )  l =-- e o ~ A ( f o r ) •  

for every e , f~A(L) ,  & f e d ( E )  with e # f , f #  ~ [compare with the results in 
Pulmannovfi (1985)]. If  now e o g A ( f o f ) Z  = ~ L ,  then from the ortho- 
modularity of L we would have the contradiction 

e o~ v f o f = f o f v  [ ( f o r ) •  A (eo~ v f o r ) ]  = f o r  

Hence e o g •  for every e , f~A(L) ,  &leA(/7,), e ~ f ,  g # f ,  since e o ~ is 
an atom. 

Proposition 4. Let (L, S) = (L | S | S) and A(L) �9 = A(L). 
Then at least one of L,/~ is a Boolean logic. 

Proof. Let L be nondistributive and choose g,f~A(/7) such that 
A f "L = ~ ,  e, f ~ A( L ), e # f . Since e o ~ _L f o r  as previously pointed out, 

by taking into account Propositions 1 and 3 and distributivity 

e o g = e o ~  A lo~<- - [ f •  v l o j  %] A l o g  

= f •  e v ( l o  (f• A gO) - - f ' o  g 
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and hence e <-f• by Proposition l(iii). The atoms of L are then mutually 
orthogonal and hence L is distributive. 

Results similar to those of  Proposition 4 have been found by  Aerts 
(1982) and Pulmannovfi (1983, 1985) in their schemes. In general we have 
the following results. 

Lemma 3. Let L be any logic. Then A(C(L)) = {e(x): x~A(L)} .  

Proof See Zecca (1981) or Beltrametti and Cassinelli (1981). 

Lemma 4. Let (L, S) = (L | L, S | 5). Then: 
(i) A(C(L)) OA(C(f~)) = A(C(L)). 

(ii) C(L) is the distributive logic generated by C(L)OC(E).  

Proof (i) By Lemma 3 and P3, if aeA(C(L)) ,gteA(C(L)) ,  then 
a o ~ = e(x) o e(2) = e(x o 2)eA(C(L))  for some xeA(L) ,  .~eA(L). Con- 
versely, if A ~A(C(L)), A CA(C(L))OA(C(L))  we have the contradiction 

A = A ^ 1o i = A ^ [ (V,  e(x,))o (V~ e(x/0)] 

= A ^ [V~., (e(x,) o e($/0)] 

= V~.~ [a A (e(x~)o e(.~/0)] 

where we have used the fact that A is a central element of  a complete lattice 
and where we have set {x~ } = A(L), {s } = A(/~). 

(ii) If a = V ,  e(x~), {x, } c A(L) and ~ = Va  e(:~a), {~a) c A(/S), then 

a o ~ = V ,  e(x~)o Va  e(~a) = V~.p (e(x~)o e(s = V~,tJ (e(x~)o e(xt~)) 

is an element of  C(L) by the point (i). On the other hand, if X~C(L) ,  then 
x = V ~ A  ~ for some {A~} c A(C(L)). By Lemma 3 and point (i), 
A = V~ e(x~ o .~) = V~ (e(x~) o e(s [Compare with Zecca (1981).] 

We have also the following characterization. 

Lemma 5. Let (L, S) = (L | S | 5). Then the following conditions 
are equivalent: 

(i) L is a distributive logic. 
(ii) L, E are distributive logics and A(L) OA(/~) = A(L). 

Proof If L is distributive, so are L and/S, since, as previously pointed 
out in (a), /~ and /~ are orthoisomorphisms from L and /S into L. From 
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C(L) =L,  C(/~) =/~, C(L) =L ,  and Lemma 4(i), we have then 
A(L) �9 = A(L). 

Suppose now condition (ii) holds. Let X~L and X = ~/~ A, for some 
{A~} ~A(L}. From Lemma 4(i) and the assumption it follows that 
A(L) = A(C(L)). Hence X~C(L) or C(L) = L. 

Lemma 6. Let (L, S) = (L | S | S). Then/~ is an irreducible logic 
if and only if both L,/~ are irreducible logics. 

Proof. If C ( L ) = { ~ L ,  1L}, from Lemma 4(i), one must have 
C(L) = {~,  1} and C(L) = {~,  i}. Conversely, if L,/~ are irreducible, then 
from PI, C(L) �9 C(/~) = {~L, 1L }, which is itself a distributive logic. From 
Lemma 4(ii) it follows that C(L) = {~L, 1L}. 

According to the above results, we have the following situations. 

Remark 3. Suppose now the physical systems X and ,~ interact, 
(L, S) = (L | L, S | S}, in such a way that X + Z is a classical system. The 
logic L is then distributive, so that it can be identified with the power set 
of its atoms: L - P(A(L)). By Lemma 4 both the interacting systems Y. and 

are classical systems, and L ~ P(A(L)) = P(A(L) • A(/_7,)) (by using also 
P2). If we identify S with the atoms (pure states) of L and S with atoms of 
L then 

S - S | 1 7 4  

that is, roughly speaking, the states of the product are the product of the 
states. This is coherent also with a distinguishing aspect of classical 
physical systems, namely that for distributive logics the pure states do not 
admit purely quantum superpositions (see, for instance, Jauch, 1968; 
Beltrametti and Cassinelli, 1981; Zecca, 1981b). 

Remark 4. Suppose with the notations of Remark 2 and Definition 4, 
(L(H), S) = (L(H) | L(I~), K(H) | K(•)), H,/~, H being separable Hilbert 
spaces with dim(H) -> 3, dim(~) -> 3, S c K(H). Since, as mentioned, our 
product of logics satisfies the coupling conditions given by Aerts (1984), 
there are only two inequivalent solutions of the product: L(H) -~ L(H | H) 
or L(H) ~_ L ( H * |  [H* being the dual of H (Aerts and Daubachies, 
1978)]. The two solutions have to be considered physically inequivalent 
since, as stressed by Aerts (1984), none of them is a solution of the universal 
problem for the coupling of logics. 

For the states, all is well because in the Hilbert model 

Sl(a|174 for every a~L(H), ~t~L(l~) 

and the superposition of the (trace class) states is preserved under the Hilbert 
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tensor product, as shown in Zecca (1981b, Section 3.3). Hence 

S = S,(1) | S , ( i )  - K(H) | = K(H| 

There are then two solutions to our problem of the product of the pss in 
the Hilbert model: (L(H | H), K(H | H)) and (L(H* | H), K(H* | if1)). 

5. THE INTERACTION OF A CLASSICAL AND A PURELY 
QUANTUM SYSTEM 

This is the case of interest in connection with the problem of measure- 
ment of a quantum system by means of a classical apparatus (Ludwig, 1973; 
Hellwig and Krausser, 1977; Piron, 1976). 

Proposition 5. Let (L, S) = (L | L, S | S), C(L) = L, C(L) = {f~5, i}. 
Then the following conditions are equivalent: 

(i) A(L) OA(L) = A(L). 
(ii) L [~L ,  x o i] = x o/5 for every xEA(L). 

Proof. ( i )~ ( i i ) .  From Proposition l(iii) one has in general 
L [ ~ L ,  x o i] = x o/~ On the other hand, if a is an atom of L [~L ,  x o i], 
then also a~A(L)  (Maeda and Maeda, 1970), so that, by (i), a = 
x ' o $ < x o i  for some x'EA(L),YeA(E). Hence from Proposition 
l(iii), a = x o $. If  now A ~L[~L ,  x o ][], then A = V~ ~ ,  {a~ } being atoms 
of L [ ~ L , X  oi]. By the previous result and Proposition 3(i), 
A =V (x ox ) =x  oL  

(ii) =~ (i) Let A cA(L). By setting {x~ } - A(L), we have A = A ^ 
(V~ x~o i)  = A ^ [(V~ (x~o i)] = V~ [A ^ (x~o i)], since, from Lemma 3, 
A(L)Oi=-A(C(L)). Hence A < x o i  for some x~A(L). Therefore 
A = x o ~7, 2 ~A(/~) by the assumption (ii). 

If now (L, S) = (L |  S | S) with C(L) = L, C(/_~) = {~ ,  i} and any 
one of the conditions of  Proposition 4 is satisfied, by standard results in 
lattice decomposition theory 

L = • (xo s x A(L)) 

that is, the compound system can be interpreted as a quantum system 
endowed with continuous superselection rules labeled by the points of the 
classical system, the mutually orthogonal sectors being replicas of the 
irreducible quantum system. This interpretation is supported also by the 
fact that L is defined up to an orthoisomorphism, as can be directly shown 
[compare with Zecca (1978); for analogous results in similar schemes see 
Aerts (1984) and Puimannovfi (1983, 1985)]. Indeed if a~L,  from the 
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uniqueness of  the decomposition a = ( ~  a~ and the result of  Proposition 
5, one has 

a~ = a  ^x~  o i = x ~  o ff,(a) ( { x ~ } - A ( L ) )  

and also 

(Ak  = ak) 

(a~)~ = x~ o : ~ ( a )  

for every {a~ } c L. If now (L',  S') is another product of (L, S) and (/~ ~q) 
with C(L) = L, C(/S) = {~ ,  i} and any one of the equivalent conditions of  
Proposition 5 is satisfied, then L',  L come out to be orthoisomorphic 
through the map 

a = V~ (x~o s ~ a '  = y~,(x~ o' ~ (a ) )  

For the states, we are now in a position to show that the product states are 
a solution for the states of the product. If  L is distributive and x e A ( L ) ,  
define sx: L ~ [ 0 ,  1] by sx(a) = 1 i f x  <a,  sx(a) = 0  i f x  Aa  = ~ .  If  rheS,  
define sxrh: L ~ [ 0 ,  1] by [compare with Pulmannovfi (1985)] 

(sxff~)(a) = (sxFn)( @ (y  o 37(a): y cA(L)))  = fft(~(a)) (a eL)  

Lemma 7. Let (L, S) = (L | L, S | S), C(L) = L, C(/S) = { ~ ,  i}, and 
any one of the conditions of  Proposition 5 be satisfied. Then S = 
{s~rh: xeA(L ) ,  rheg} is a minimal solution for the states of the product in 
the sense that 

S~(a) |174  for every aeL ,  ~teE 

Proof. By setting A(a) = {yeA(L):  y <-a) we have 

(sxrh)(a o ~t) = (sxffO( ( ~ ( y  ~ ?t: y cA(a))) 

= (s~rh)( ( ~ ( y o  s y cA(a))) 

= 

where Y~(~) = ~ if yeA(a) ,  ~(~) = ~ if yq~A(a). Then s~rheSl(a o ~) iff 
x -< a and rh(fi) = 1 and hence SI (a o 6) = S1 (a) | Sl (~). 
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